L'area totale di un parallelepipedo rettangolo è di 1020 cm², le dimensioni della base misura 18 cm e 16 cm. Calcola l'altezza e il volume del parallelepipedo.
Svolgimento:
In questo problema abbiamo l'area totale e come avrai certamente studiato si ottiene sommando le due aree di base più l'area laterale del parallelepipedo. In questo modo:
AT = 2AB + AL
Il problema ci dice che le basi sono di forma rettangolare e che misurano rispettivamente 18 e 16 cm. Quindi è praticamente l'area del rettangolo che si calcola moltiplicando la base per l'altezza. In questo modo:
AB = b x h = 18 x 16 = 288 cm²
Siccome le aree sono 2, perché c'è la base di sotto ma anche quella di sopra moltiplichiamo il valore di una base per 2.
2AB = 288 x 2 = 576 cm²
Adesso abbiamo a disposizione l'area totale che avevamo già da prima e l'area di entrambe le basi, facendo la formula inversa e quindi la differenza otteniamo la formula per trovare l'area laterale.
AL = AT - 2AB = 1020 - 576 = 444 cm²
Adesso devi calcolarti il perimetro di base che ti servirà per la formula successiva.
Pb = 18 + 16 + 18 + 16 = 68 cm
Se facciamo il rapporto tra l'area laterale ed il perimetro di base otteniamo l'altezza del parallelepipedo.
h = AL / Pb = 444 : 68 = 6,53 cm ( l'ho arrotondato per eccesso)
Adesso come ultima cosa manca solo il volume che si ottiene moltiplicando le dimensioni di base del parallelepipedo e l'altezza che ci siamo appena trovati.
V = a x b x h = 18 x 16 x 6,53 = 1880,64 cm³
Svolgimento:
In questo problema abbiamo l'area totale e come avrai certamente studiato si ottiene sommando le due aree di base più l'area laterale del parallelepipedo. In questo modo:
AT = 2AB + AL
Il problema ci dice che le basi sono di forma rettangolare e che misurano rispettivamente 18 e 16 cm. Quindi è praticamente l'area del rettangolo che si calcola moltiplicando la base per l'altezza. In questo modo:
AB = b x h = 18 x 16 = 288 cm²
Siccome le aree sono 2, perché c'è la base di sotto ma anche quella di sopra moltiplichiamo il valore di una base per 2.
2AB = 288 x 2 = 576 cm²
Adesso abbiamo a disposizione l'area totale che avevamo già da prima e l'area di entrambe le basi, facendo la formula inversa e quindi la differenza otteniamo la formula per trovare l'area laterale.
AL = AT - 2AB = 1020 - 576 = 444 cm²
Adesso devi calcolarti il perimetro di base che ti servirà per la formula successiva.
Pb = 18 + 16 + 18 + 16 = 68 cm
Se facciamo il rapporto tra l'area laterale ed il perimetro di base otteniamo l'altezza del parallelepipedo.
h = AL / Pb = 444 : 68 = 6,53 cm ( l'ho arrotondato per eccesso)
Adesso come ultima cosa manca solo il volume che si ottiene moltiplicando le dimensioni di base del parallelepipedo e l'altezza che ci siamo appena trovati.
V = a x b x h = 18 x 16 x 6,53 = 1880,64 cm³